

for Construction Prague
Prosecká 811/76a
190 00 Prague
Czech Republic
eota@tzus.cz

European Technical Assessment

ETA 22/0522 of 02/08/2022

Technical Assessment Body issuing the ETA: Technical and Test Institute

for Construction Prague

Trade name of the construction product SPI

Product family to which the construction product belongs

construction product belong

Manufacturing plant(s)

Manufacturer

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of

SPIT MULTI-MAX PLUS

Product area code: 33 Injection anchors for use in masonry

Société SPIT Route de Lyon

F-26501 BOURG-LES-VALENCE - France

Plant 1

19 pages including 16 Annexes which form an integral part of this assessment.

EAD 330076-00-0604 Metal injection anchors for use in masonry

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body - Technical and Test Institute for Construction Prague. Any partial reproduction has to be identified as such.

1. Technical description of the product

The SPIT MULTI-MAX PLUS for masonry is a bonded anchor consisting of a cartridge with injection mortar, a plastic sieve sleeve and an anchor rod with hexagon nut and washer. The steel elements are made of galvanized steel or stainless steel.

The sieve sleeve is pushed into a drilled hole and filled with injection mortar before the anchor rod is placed in the sieve sleeve. The installation of the anchor rod in solid masonry can be also done without a sieve sleeve. The installation of the anchor rod in autoclaved aerated concrete shall be done without a sieve sleeve. The steel element is anchored via the bond between metal part, injection mortar and masonry.

The illustration and the description of the product are given in Annex A.

2. Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for tension and shear loads	See Annex C 1, C 2
Reduction factor for job site tests (β – factor)	See Annex C 1, C 2
Edge distances and spacing	See Annex B 8, B 9
Displacement under shear and tension loads	See Annex C 1, C 2
Durability	See Annex A 3

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1

3.3 Hygiene, health and environment (BWR 3)

No performance determined.

3.4 General aspects relating to fitness for use

Durability and serviceability are only ensured if the specifications of intended use according to Annex B 1 are kept.

4. Assessment and verification of constancy of performance (AVCP) system applied with reference to its legal base

According to the Decision 97/177/EC of the European Commission¹, the system of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) given in the following table applies.

Product	Intended use	Level or class	System
Injection anchors for	For fixing and/or supporting to		
use in masonry	masonry, structural elements		1
-	(which contributes to the stability	-	ı
	of the works) or heavy units		

.

Official Journal of the European Communities L 073 of 14.03.1997

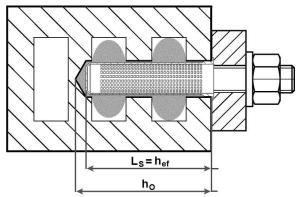
5. Technical details necessary for the implementation of the AVCP system, as provided in the applicable EAD

The factory production control shall be in accordance with the control plan which is a part of the technical documentation of this European Technical Assessment. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited at Technical and Test Institute for Construction Prague ². The results of the factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.

Issued in Prague on 02.08.2022

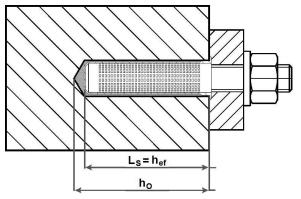
By

Ing. Jiří Studnička, Ph.D.Head of the Technical Assessment Body

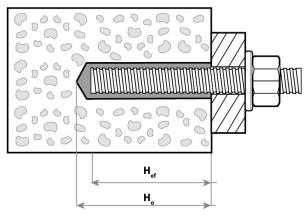

Page 3 of 19 ETA 22/0522 of 02/08/2022

_

The control plan is a confidential part of the documentation of the European technical assessment, but not published together with the ETA and only handed over to the approved body involved in the procedure of AVCP.


Installation in hollow or perforated brick masonry

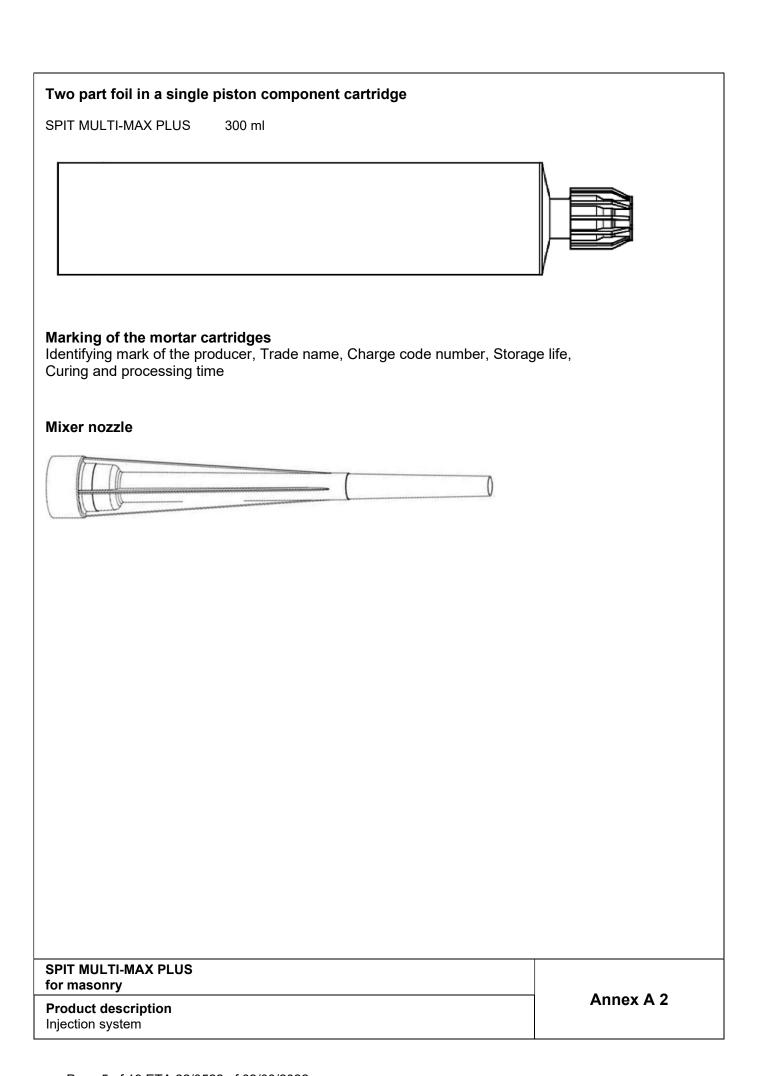
Installation of anchor rod with sieve sleeve


Installation in solid brick masonry

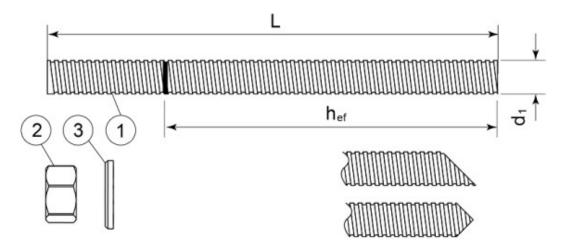
Installation of anchor rod with or without sieve sleeve

Installation in autoclaved aerated concrete

Installation of anchor rod without sieve sleeve



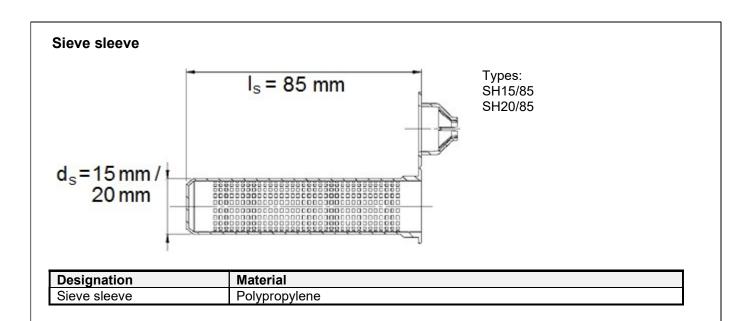
 $\begin{array}{ll} L_s & = \text{length of the sieve sleeve} \\ h_{ef} & = \text{effective setting depth} \\ h_0 & = \text{bore hole depth} \end{array}$


SPIT MULTI-MAX PLUS for masonry

Product description Installed condition

Annex A 1

Threaded rod M6, M8, M10, M12


Standard commercial threaded rod with marked embedment depth

Part	Designation	Material						
Steel	Steel, zinc plated ≥ 5 µm acc. to EN ISO 4042 or Steel, hot-dip galvanized ≥ 40 µm acc. to EN ISO 1461 and EN ISO 10684 or Steel, zinc diffusion coating ≥ 15 µm acc. to EN 13811							
1	Anchor rod	Steel, EN 10087 or EN 10263 Property class 4.6 ¹⁾ , 5.8, 8.8, 10.9 ²⁾ EN ISO 898-1						
2	Hexagon nut EN ISO 4032	According to threaded rod, EN 20898-2						
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod						
Stain	less steel							
1	Anchor rod	Material: A2-70, A4-70, A4-80, EN ISO 3506						
2	Hexagon nut EN ISO 4032	According to threaded rod						
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod						
High	corrosion resistant steel							
1	Anchor rod	Material: 1.4529, 1.4565, EN 10088-1						
2	Hexagon nut EN ISO 4032	According to threaded rod						
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod						

¹⁾ Only for use in Autoclaved aerated concrete

²⁾ Galvanized rod of high strength are sensitive to hydrogen induced brittle failure

SPIT MULTI-MAX PLUS for masonry	
Product description Threaded rod and materials	Annex A 3

SPIT MULTI-MAX PLUS for masonry	
Product description Sleeve	Annex A 4

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads

Base materials

- Solid brick masonry (Masonry group b), according to Annex B2.
- Hollow brick masonry (Masonry group c), according to Annex B2 to B4.
- Autoclaved aerated concrete (Masonry group d), according to Annex B5
- Mortar strength class of the masonry M2,5 at minimum according to EN 998-2:2010.
- For other bricks in solid masonry, hollow or perforated masonry or autoclaved aerated concrete the characteristic resistance of the anchorages may be determined by job site tests according to EOTA Technical Report TR 053 and under consideration of the β-factor to Annex C1, Table C4 or Annex C 2, Table C8.

Note: The characteristic resistance for solid bricks are also valid for larger brick sizes and larger compressive strength of the masonry unit.

Temperature range:

T: -40°C to +80°C (max. short. term temperature +80°C and max. long term temperature +50°C)

Use conditions (Environmental conditions)

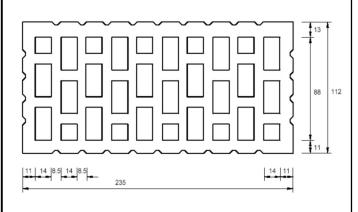
- (X1) Structures subject to dry, internal conditions
 (zinc coated steel, stainless steel, high corrosion resistance steel)
- (X2) Structures subject to external atmospheric exposure (including industrial and marine environment) or exposure in permanently damp internal condition, if no particular aggressive conditions exist (stainless steel A4, high corrosion resistant steel)
- (X3) Structures subject to external atmospheric exposure or exposure in permanently damp internal conditions
 or particularly aggressive conditions such as permanent or alternate immersion in seawater or the splash zone
 of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution
 (e.g. in desulfurization plants or road tunnels, where de-icing materials are used
 (high corrosion resistant steel)

Use categories in respect of installation and use:

- Category d/d Installation and use in structures subject to dry, internal conditions
- Category w/d Installation in dry or wet substrate and use in structures subject to dry, internal conditions
- Category w/w Installation and use in structures subject to dry or wet environmental conditions

Design:

- Verifiable calculation notes and drawings are prepared taking account the relevant masonry in the region of the anchorage, the loads to be transmitted and their transmission to the supports of the structure. The position of the anchor is indicated on the design drawings.
- The anchorage are designed in accordance with the EOTA Technical Report TR 054, Design method A,, under the responsibility of an engineer experienced in anchorages and masonry work.

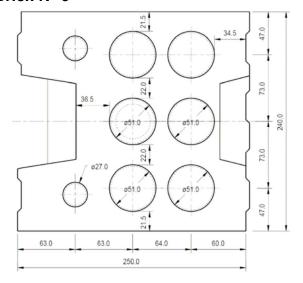

Installation:

- Dry or wet structures
- Anchor Installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.


SPIT MULTI-MAX PLUS for masonry	
Intended use Specifications	Annex B 1

Table B1: Types and dimensions of block and bricks

Brick N° 1


Brick N° 2

Hollow clay brick HLz 12-1,0-2DF according to EN 771-1 length/width/height = 235 mm/112 mm/115 mm $f_b \geq$ 12 N/mm² / $\rho \geq$ 1,0 kg/dm³

Hollow sand lime brick KSL 12-1,4-3DF according to EN 771-2 length/width/height = 240 mm/175 mm/113 mm $f_b \ge 12 \text{ N/mm}^2 / \rho \ge 1,4 \text{ kg/dm}^3$

Brick N° 3

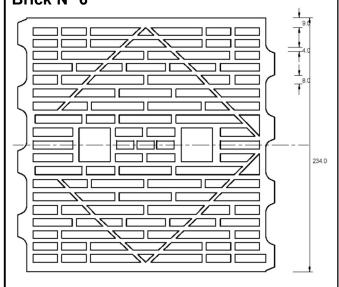
Hollow sand lime brick KSL 12-1,4-8DF according to EN 771-2 length/width/height = 250 mm/240 mm/237 mm $f_b \ge 12 \text{ N/mm}^2/\rho \ge 1,4 \text{ kg/dm}^3$

Brick N° 4

Solid clay brick Mz 12-2,0-NF according to EN 771-1 length/width/height = 240 mm/116 mm/71 mm $f_b \geq$ 12 N/mm² / $\rho \geq$ 2,0 kg/dm³

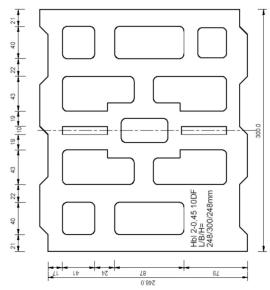
Brick N° 5

Solid sand lime brick KS 12-2,0-NF according to EN 771-2 length/width/height = 240 mm/115 mm/70 mm $f_b \ge$ 12 N/mm² / $\rho \ge$ 2,0 kg/dm³

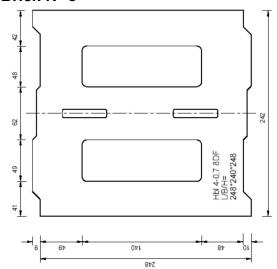

SPIT MULTI-MAX PLUS for masonry

Intended use
Brick types and properties

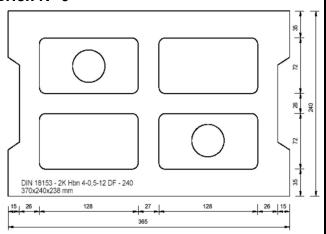
Annex B 2


Table B2: Types and dimensions of block and bricks

Brick N° 6


Hollow clay brick HLzW 6-0,7-8DF according to EN 771-1 length/width/height = 250 mm/240 mm/240 mm $f_b \ge 6 \text{ N/mm}^2 / \rho \ge 0.8 \text{ kg/dm}^3$

Brick N° 7

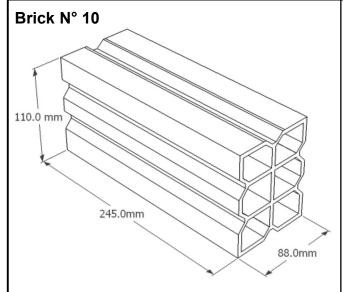

Lightweight concrete hollow block Hbl 2-0,45-10DF according to EN 771-3 length/width/height = 250 mm/300 mm/248 mm $f_b \ge 2,0 \text{ N/mm}^2$ / $\rho \ge 0,45 \text{ kg/dm}^3$

Brick N° 8

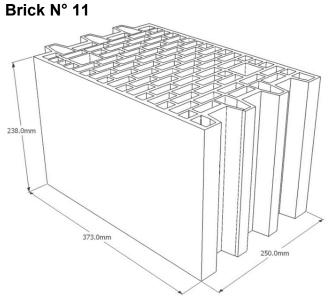
Lightweight concrete hollow block HbI 4-0,7-8DF according to EN 771-3 length/width/height = 250 mm/240 mm/248 mm $f_b \geq 4,0 \ N/mm^2 \ / \ \rho \geq 0,7 \ kg/dm^3$

Brick N° 9

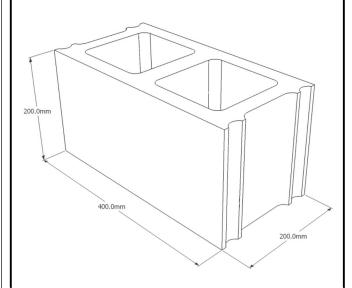
Concrete masonry unit Hbn 4-12DF according to EN 771-3 length/width/height = 370 mm/240 mm/238 mm $f_b \ge 4 \text{ N/mm}^2 / \rho \ge 1,2 \text{ kg/dm}^3$


SPIT MULTI-MAX PLUS for masonry

Intended use

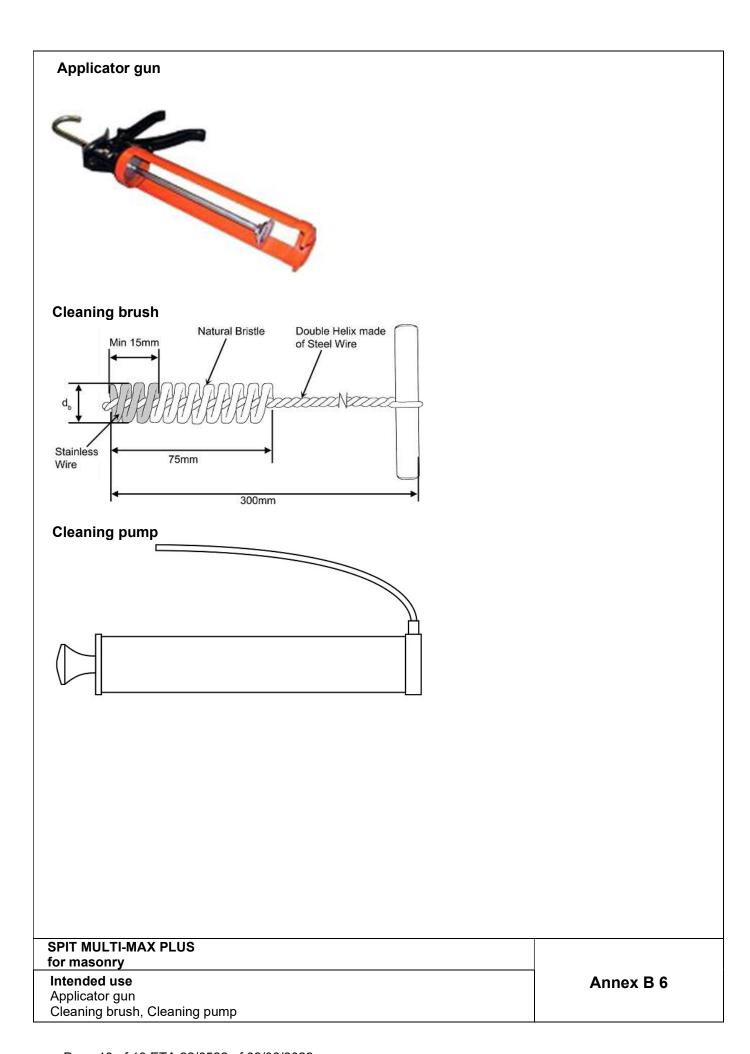

Brick types and properties

Annex B 3



Hollow clay brick Hueco Doble according to EN 771-1 length/width/height = 245 mm/110 mm/88 mm $f_b \geq 2.5 \ N/mm^2 \ / \ \rho \geq 0.74 \ kg/dm^3$

Hollow clay brick Porotherm 25 P+W KL15 according to EN 771-1 length/width/height = 373 mm/250 mm/238 mm $f_b \ge 12 \text{ N/mm}^2 / \rho \ge 0.9 \text{ kg/dm}^3$


Brick N° 12

Concrete hollow block Bloque Hormingon according to EN 771-3 length/width/height = 400 mm/200 mm/200 mm $f_b \ge 2.5 \text{ N/mm}^2$ / $\rho \ge 1.7 \text{ kg/dm}^3$

SPIT MULTI-MAX PLUS for masonry Intended use Brick types and properties Annex B 4

Brick N° 13	Brick N° 14	
Autoclaved aerated concrete AAC2 according to EN 771-4 length/width/height = 599 mm/375 mm/249 mm $f_b \ge 2.0 \text{ N/mm}^2 / \rho \ge 0.35 \text{ kg/dm}^3$	Autoclaved aerated coraccording to EN 771-4 length/width/height = 50 f _b ≥ 4.0 N/mm ² / $\rho \geq 0.5$	99 mm/375 mm/249 mm
Brick N° 15		
Autoclaved aerated concrete AAC6 according to EN 771-4 length/width/height = 499 mm/240 mm/250 mm $f_b \ge 6,0$ N/mm ² / $\rho \ge 0,65$ kg/dm ³		
	_	
SPIT MULTI-MAX PLUS for masonry		

Installation instructions **1.** Drill the hole to the correct 2. Use the cleaning pump to clean diameter and depth using a rotary the hole. percussive machine. 2x **3.** Use the cleaning brush to clean **4.** Use the cleaning pump to clean the hole. Diameter of Cleaning brush the hole. according to Table B4. **5.** Use the cleaning brush to clean **6.** Use the cleaning pump to clean the hole. Diameter of Cleaning brush the hole. according to Table B4. 2x 7. If used in hollow or perforated 8. Once the hole is prepared, remove the screw cap from the brick masonry: cartridge. Plug the centering cap and insert the correct perforated sleeve flush with the surface of the base material. 9. Attach the mixer nozzle and place **10.** Dispense the first part to the cartridge in the applicator gun. waste, until an even colour is achieved. **11.** Remove any remaining water 12. Insert the nozzle to the far from the hole. end of the hole (using extension tubing if necessary) and inject the resin, withdrawing the nozzle/tube as the hole fills. **13.** If used in hollow or perforated **14.** Immediately insert the fixing brick masonry: (steel element) slowly and with a slight twisting motion. Remove Insert mixer nozzle to the end of the excess resin from around the perforated sleeve and completely fill mouth of the hole. the sleeve with resin. Withdraw the mixer nozzle as the sleeve fills. **15.** Leave the fixing undisturbed until **16.** Attach the fixture and tighten the cure time (see Table B6) has the nut. Maximum installation torque moment according to elapsed. Table B4.

SPIT MULTI-MAX PLUS	
for masonry	
Intended use Installation instructions	Annex B 7

 Table B5: Installation parameters in solid and hollow masonry

Base material			Brick No. 1 - 12					
A make a five a		Anchor rod			Anchor rod			
Anchor type	without sleeve			with sleeve				
Size			M8	M10	M12	M8	M10	M12
Internal threaded socket	$d_{to}xl_{t}$	[mm]	-	-	-	•	ı	ı
Sieve sleeve	Is	[mm]	-	-	-	85	85	85
Sieve sieeve	ds	[mm]	-	-	-	15/16	15/16	20
Nominal drill hole diameter	d_0	[mm]	15	15	20	15/16	15/16	20
Diameter of cleaning brush	d♭	[mm]	20 ^{±1}	20 ^{±1}	22 ^{±1}	20 ^{±1}	20 ^{±1}	22 ^{±1}
Depth of the drill hole	h ₀	[mm]		90			90	
Effective anchorage depth	h _{ef}	[mm]		85			85	
Diameter of clearance hole in the fixture	d _f ≤	[mm]	9	12	14	9	12	14
Torque moment	T _{inst} ≤	[Nm]		2			2	

Table B6: Edge distances and spacing in solid and hollow masonry

Anchor rod													
		M8			M8 M10					M12			
Base material ¹⁾	C _{cr} = C _{min}	Scr II = Smin III	Sα⊥ = S _{min} ⊥	C _{cr} = C _{min}	Scr II = Smin II	S _{cr} ⊥ = S _{min} ⊥	Ccr = Cmin	Scr II = Smin II	S _{cr} ⊥ = S _{min} ⊥				
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]				
Brick N° 1	100	235	115	100	235	115	120	235	115				
Brick N° 2	100	240	113	100	240	113	120	240	113				
Brick N° 3	100	250	237	100	250	237	120	250	237				
Brick N° 4	128	255	255	128	255	255	128	255	255				
Brick N° 5	128	255	255	128	255	255	128	255	255				
Brick N° 6	100	250	240	100	250	240	120	250	240				
Brick N° 7	100	250	248	100	250	248	-	-	-				
Brick N° 8	100	250	248	100	250	248	120	250	248				
Brick N° 9	100	370	238	100	370	238	120	370	238				
Brick N°10	100	245	110	100	245	110	120	245	110				
Brick N°11	100	373	238	100	373	238	120	373	238				
Brick N°12	100	400	200	-	-	-	120	400	200				

 $^{^{1)}\,\}mbox{Brick N}^{\circ}$ according to Annex B 2 to B 4

SPIT MULTI-MAX PLUS for masonry	
Intended use Installation parameters	Annex B 8

Table B7: Installation parameters in autoclaved aerated concrete

Base material		Brick No. 13 - 15					
Anchor type		Anchor rod					
Alleller type		withou	t sleeve				
Size			M6	M8	M10	M12	
Nominal drill hole diameter	d ₀	[mm]	8	10	12	14	
Diameter of	dь	[mm]	9±1	14 ^{±1}	14 ^{±1}	20 ^{±1}	
cleaning brush	uв	[mmn]	9	14	14	20	
Depth of the drill hole	h_0	[mm]		80		95	
Effective anchorage depth	h _{ef}	[mm]		75		90	
Diameter of clearance hole in the fixture d _f ≤			7	9	12	14	
Torque moment	2						

Table B8: Edge distances and spacing in autoclaved aerated concrete

Anchor rod										
		M6, M8, M10			M12					
Base material ¹⁾	C _{cr} = C _{min}	S _{cr} II = S _{min} II	S _{cr} ⊥ = S _{min} ⊥	C _{cr} = C _{min}	S _{cr} II = Smin II	S _{cr} ⊥ = S _{min} ⊥				
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]				
Brick N°13	113	225	225	135	270	270				
Brick N°14	113	225	225	135	270	270				
Brick N°15	113	225	225	135	270	270				

¹⁾ Brick N° according to Annex B 5

SPIT MULTI-MAX PLUS for masonry	
Intended use Installation parameters	Annex B 9

Table B9.1: Minimum curing time SPIT MULTI-MAX PLUS

Resin cartridge temperature [°C]	T Work [mins]	Base material Temperature [°C]	T Load [mins]	
min +5	18	min +5	145	
+5 to +10	10	+5 to +10	140	
+10 to +20	6	+10 to +20	85	
+20 to +25	5	+20 to +25	50	
+25 to +30	4	+25 to +30	40	
+30	4	+30	35	

T work is typical gel time at highest temperature

T load is set at the lowest temperature

SPIT MULTI-MAX PLUS for masonry	
Intended use Working and curing time	Annex B 10

Table C1: Characteristic resistance under tension and shear loading

		Anchor rods N _{Rk} = V _{Rk} [kN] ¹⁾										
Base material	U	lse condition d/d, w/d	S	Use conditions w/w								
	M8	M10	M12	M8	M8 M10							
Brick N° 1	2,5	2,0	2,0	2,0	1,2	1,5						
Brick N° 2	0,75	1,2	0,5	0,6	0,9	0,5						
Brick N° 3	0,75	1,2	0,5	0,75	0,9	0,5						
Brick N° 4	1,5	1,5	3,0	1,5	1,5	3,0						
Brick N° 5	0,75	0,9	1,5	0,75	0,9	1,2						
Brick N° 6	1,2	1,2	0,9	0,9	0,9	0,75						
Brick N° 7	0,6	0,3	-	0,6	0,3	-						
Brick N° 8	0,6	1,5	1,2	0,5	1,2	0,9						
Brick N° 9	2,5	1,5	2,5	2,0	1,5	2,0						
Brick N° 10	0,75	0,5	0,75	0,75	0,5	0,6						
Brick N° 11	1,5	1,5	1,5	1,5	1,2	1,5						
Brick N° 12	0,75	-	0,6	0,75	-	0,5						

For design according TR 054: $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,p}$ according to TR 054 For $V_{Rk,s}$ see Annex C1, Table C2; Calculation of $V_{Rk,pb}$ and $V_{Rk,c}$ according to TR 054

Table C2: Characteristic bending moment

Size		M6	M8	M10	M12
Steel grade 5.8	M _{Rk,s} [N.m]	8	19	37	66
Steel grade 8.8	M _{Rk,s} [N.m]	12	30	60	105
Steel grade 10.9	M _{Rk,s} [N.m]	15	37	75	131
Stainless steel grade A2-70, A4-70	M _{Rk,s} [N.m]	11	26	52	92
Stainless steel grade A4-80	M _{Rk,s} [N.m]	12	30	60	105
Stainless steel grade 1.4529 strength class 70	M _{Rk,s} [N.m]	11	26	52	92
Stainless steel grade 1.4565 strength class 70	M _{Rk,s} [N.m]	11	26	52	92

Table C3: Displacements under tension and shear load

Base material	F [kN]	δ _{N0} [mm]	δ _{N∞} [mm]	δ _{v0} [mm]	δ _{V∞} [mm]
Solid bricks	N //4 4	0,6	1,2	1,0 ¹⁾	1,5 ¹⁾
Perforated and hollow bricks	$N_{Rk} / (1,4 \cdot \gamma_M)$	0,14	0,28	1,0 ¹⁾	1,5 ¹⁾

¹⁾ the hole gap between bolt and fixture shall be considered additionally

Table C4: β - factors for job site tests according to TR 053

Brick N°	N° 1	N° 2	N° 3	N° 4	N° 5	N° 6	N° 7	N° 8	N° 9	N° 10	N° 11	N° 12
β - factor – d/d, w/d	0,62	0,22	0,28	0,65	0,26	0,43	0,42	0,36	0,60	0,65	0,65	0,59
β - factor – w/w	0,55	0,18	0,23	0,58	0,22	0,38	0,37	0,31	0,53	0,58	0,58	0,53

SPIT MULTI-MAX PLUS for masonry	
Performances	Annex C 1
Characteristic resistance, displacement	
β-factors for job site testing under tension load	

Table C5: Characteristic resistance under tension and shear loading for autoclaved aerated concrete

Base		Anchor rods $N_{Rk} = V_{Rk} [kN]^{1)}$											
material	Us	e cond	itions (d/d	Us	e cond	itions v	v/d	Us	e cond	itions v	v/w	
	М6	M8	M10	M12	М6	M8	M10	M12	М6	M8	M10	M12	
Brick N° 13	0,75	0,75	0,75	0,9	0,6	0,6	0,6	0,75	0,6	0,6	0,6	0,75	
Brick N° 14	0,9	1,5	2,0	2,5	0,75	1,2	1,5	2,0	0,75	1,2	1,5	1,75	
Brick N° 15	1,2	2,5	3,0	3,5	0,9	2,0	2,5	3,0	0,9	2,0	2,0	2,5	

¹⁾ For design according TR 054: $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,s}$; $N_{Rk,pb}$ according to TR 054 For $V_{Rk,s}$ see Annex C1, Table C2; Calculation of $V_{Rk,pb}$ and $V_{Rk,c}$ according to TR 054

Table C6: Characteristic bending moment for autoclaved aerated concrete

Table Col Characteriotic Bernamy moment for autociated acrates controls										
Size		M6	M8	M10	M12					
Steel grade 4.6	M _{Rk,s} [N.m]	6	15	30	52					
Steel grade 5.8	M _{Rk,s} [N.m]	8	19	37	66					
Steel grade 8.8	M _{Rk,s} [N.m]	12	30	60	105					
Steel grade 10.9	M _{Rk,s} [N.m]	15	37	75	131					
Stainless steel grade A2-70, A4-70	M _{Rk,s} [N.m]	11	26	52	92					
Stainless steel grade A4-80	M _{Rk,s} [N.m]	12	30	60	105					
Stainless steel grade 1.4529 strength class 70	M _{Rk,s} [N.m]	11	26	52	92					
Stainless steel grade 1.4565 strength class 70	M _{Rk,s} [N.m]	11	26	52	92					

Table C7: Displacements under tension and shear load for autoclaved aerated concrete

Table C7. Displacements under tension and shear load for autociaved aerated concrete								
Size			M6	M8	M10	M12		
Load	F	[kN]	$N_{Rk} / (1,4 \cdot \gamma_M)$					
Autoclaved aerated concrete - AAC2	δηο	[mm]	0,29	0,39	0,36	0,37		
	δ _{N∞}	[mm]	0,57	0,78	0,73	0,74		
	$\delta_{V0}^{1)}$	[mm]	0,24	0,37	0,11	0,12		
	$\delta_{V^{\infty}}^{1)}$	[mm]	0,35	0,54	0,16	0,18		
Autoclaved aerated concrete – AAC4	δ_{N0}	[mm]	0,39	0,39	0,36	0,37		
	δ _{N∞}	[mm]	0,78	0,78	0,73	0,74		
	$\delta_{V0}^{1)}$	[mm]	0,35	0,79	0,60	0,32		
	$\delta_{V^{\infty}}^{1)}$	[mm]	0,50	1,18	0,87	0,49		
Autoclaved aerated concrete - AAC6	δ_{N0}	[mm]	0,39	0,08	0,05	0,06		
	δ _{N∞}	[mm]	0,78	0,15	0,08	0,11		
	$\delta_{V0}^{1)}$	[mm]	0,35	0,79	0,60	0,32		
	$\delta_{V^{\infty}}^{1)}$	[mm]	0,50	1,18	0,87	0,49		

¹⁾ the hole gap between bolt and fixture shall be considered additionally

Table C8: β - factors for job site tests for autoclaved aerated concrete according to TR 053

Brick N°	N° 13	N° 14	N° 15
β - factor - Use conditions d/d	0,96	0,96	0,96
β - factor - Use conditions d/w	0,80	0,80	0,80
β - factor - Use conditions w/w	0,71	0,71	0,71

SPIT MULTI-MAX PLUS for masonry	
Performances	Annex C 2
Characteristic resistance, displacement	
β-factors for job site testing under tension load	