

Centre Scientifique et Technique du Bâtiment

84 avenue Jean Jaurès CHAMPS-SUR-MARNE F-77447 Marne-la-Vallée Cedex 2

Tél.: (33) 01 64 68 82 82 Fax: (33) 01 60 05 70 37

European Technical Assessment

ETA-13/0437 of 18/06/2018

English translation prepared by CSTB - Original version in French language

General Part

Nom commercial Trade name

Famille de produit Product family

Titulaire Manufacturer

Usine de fabrication Manufacturing plant

Cette evaluation contient: This Assessment contains

Cette evaluation remplace: This Assessment replaces

Base de l'ETE Basis of ETA

SPIT MULTI-MAX

Cheville à scellement de type "à injection" avec tige d'ancrage diamètres M8, M10 et M12 pour fixation dans les

maçonneries.

Bonded injection type anchor with anchor rod sizes

M8, M10, M12 for use in masonry.

SPIT SAS

Route de Lyon

26500 Bourg-Les-Valence

FRANCE

Société SPIT

Route de Lvon

FR-26501 BOURG-LES-VALENCE

15 pages incluant 12 annexes qui font partie intégrante de

cette évaluation

15 pages including 12 annexes which form an integral part of

this assessment

EAD 330076-00-604, Edition juin 2014 EAD 330076-00-604, Edition June 2014

ATE - 13/0437 délivrée le 31/05/2013 ETA- 13/0437 issued on 31/05/2013

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such. Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

1 Technical description of the product

The SPIT MULTI-MAX for masonry is a bonded anchor (injection type) with perforated sleeve or a system ID-ALL and a anchor rod made of galvanised steel or stainless steel which is placed into a drilled hole previously injected with a two components injection mortar using an applicator gun equipped with a special mixing nozzle. The anchor rod is inserted into the resin with a slow and slight twisting motion. The mortar cartridges are available in different sizes 410 ml to 280 ml. The hollow sleeve or the system ID-ALL are not used for the heavy masonry.

The illustration and the description of the product are given in Annex A1.

2 Specification of the intended use

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annexes B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic tension resistance and shear resistance	See Annex C1
Displacements	See Annex C2

3.2 Safety in case of fire (BWR 2)

Not relevant.

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances contained in this European Technical Assessment, there may be requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Construction Products Regulation (EU) n° 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

For Basic Requirement Safety in Use the same criteria are valid as for Basic Requirement Mechanical Resistance and Stability.

3.5 Protection against noise (BWR 5)

Not relevant.

3.6 Energy economy and heat retention (BWR 6)

Not relevant.

3.7 Sustainable use of natural resources (BWR 7)

For the sustainable use of natural resources no performance was determined for this product.

3.8 General aspects relating to fitness for use

Durability and Serviceability are only ensured if the specifications of intended use according to Annex B1 are kept.

4 Assessment and Verification of Constancy of Performance (AVCP)

According to the Decision 96/582/EC of the European Commission¹, as amended, the system of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) given in the following table apply.

Product	Intended use	Level or class	System
Metal anchors for use in masonry	For fixing and/or supporting to structural elements or heavy in masonry	_	1

5 Technical details necessary for the implementation of the AVCP system

Technical details necessary for the implementation of the Assessment and verification of constancy of performance (AVCP) system are laid down in the control plan deposited at Centre Scientifique et Technique du Bâtiment.

The manufacturer shall, on the basis of a contract, involve a notified body approved in the field of anchors for issuing the certificate of conformity CE based on the control plan.

Issued in Marne La Vallée on 18/06/2018 by Charles Baloche
Directeur technique

The original French version is signed

Product in use:

Figure A1: Perforated sleeve in hollow masonry

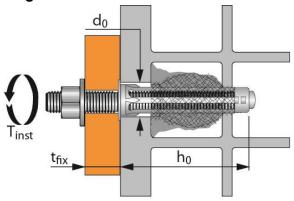
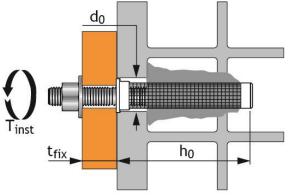



Figure A2 : System ID-ALL in hollow masonry

SPIT MULTI-MAX	Annex A1
System Description	

Injection system mortar MULTI-MAX Cartridge 380 ml and 410 ml Cartridge 280 ml and 300 ml Mixing nozzles Perforated sleeve System iD - ALL Standard commercial threaded rod with identification marking sealing lenght **SPIT MULTI-MAX** Annex A2 Resin, mixing tip, anchors

able A1: Materials					
Designation	Material				
Injection mortar	Methacrylate resin, hardener and inorganic agents				
Elements made of zinc coated s	teel				
Threaded rod M8 – M12 (standard commercial rods)	Strength class 5.8,6.8, 8.8, 10.9 EN ISO 898-1, Zinc coating ≥ 5µm NF E25-009,				
Washer	Steel DIN 513 Zinc coating ≥ 5µm NF E25-009,				
Nut	Steel, EN 20898-2 Grade 6 or 8 Zinc coating ≥ 5µm NF E25-009,				
Elements made of stainless stee					
Threaded rod M8 – M12	Stainless steel A4-70: 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 acc. EN 10088				
Washer	Stainless steel A4-70: 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088				
Nut	Strength class 80 EN ISO 3506-2 Stainless steel 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 acc. EN 10088				
Elements made of high corrosion resistant stainless steel					
Threaded rod M8 – M12	Stainless steel HCR R _m ≥ 650 MPa Acc. EN 10088, 1.4529 / 1.4565				
Washer	Stainless steel HCR Acc. EN 10088, 1.4529 / 1.4565				
Nut	Stainless steel HCR R _m ≥ 650 MPa Acc. EN 10088, 1.4529 / 1.4565				

SPIT MULTI-MAX	Annex A3
Materials	

Intended use

Base materials:

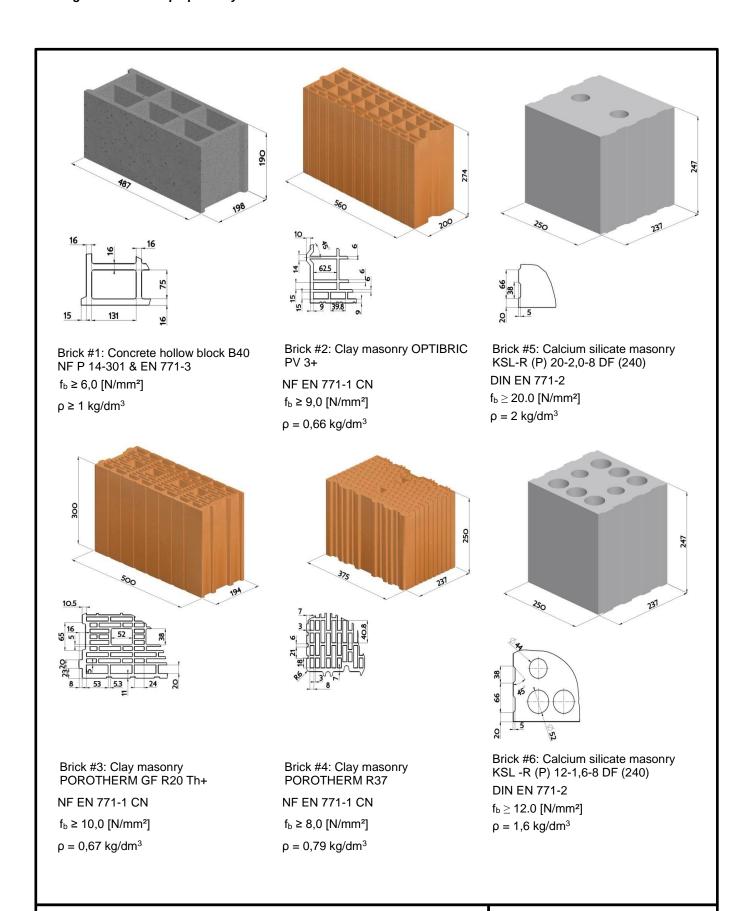
- · Solid masonry, hollow or perforated use category b and c;
- For the others solid masonry, hollow or perforated, characteristics resistances can be determined with field tests according to EOTA TR 054 with coefficient β given in the table C1 annex C3.

Table B1: Overview use categories and performance categories

Anchor		MULTIMAX			
Drilling		Hammer drilling			
Static and quasi static loading, in solid masonry, hollow or perforated		M8 to M12 Tables C1, C2, C3.			
Use category:		category w/w dry or wet (flooded holes are excluded)			
Installation tem	Installation temperature		0°C à 40°C (table B4)		
In-service temperature	Temperature range	-40°C to +40°C	(max long term temperature +24°C and max short term temperature +40°C)		

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- · Structures subject to permanently damp internal condition :
 - if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
 - with particular aggressive conditions (high corrosion resistant steel).
- Structures subject to external atmospheric exposure including industrial and marine environment:
 - if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
 - with particular aggressive conditions (high corrosion resistant steel).


Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Overhead installations are permitted

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages.
- Verifiable calculation notes and drawings are prepared taking account of the forces to be transmitted.
 The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to supports, etc.).
- The anchor is to be used only for anchorages subject to static or quasi-static loading in solid masonry (use category b) or in hollow or perforated masonry (use category c) according to annex B2. The mortar strength class of the masonry has to be M 2,5 according to EN 998-2:2010 at minimum

SPIT MULTI-MAX	Annex B1
Intended use – specification	

SPIT	MI	II TI	-1/1	ΔY

Types of bricks and dimensions

Annex B2

Brick n°1		M8- M10	
06		M8- M10	T _{inst} = 2.0 N.m
198		M12	
Brick n°2	· ()	M8- M10	
P.D.		M8- M10	T _{inst} = 2.0 N.m
10,77		M12	
Brick n°3	0-0-	M8- M10	
300		M8- M10	T _{inst} = 3.0 N.m
500		M12	
Brick n°4	⊕ €€	M8- M10	
92		M8- M10	T _{inst} = 3.0 N.m
25 20		M12	
Brick n°6	· (1)	M8- M10	
D.		M8- M10	T _{inst} = 3.0 N.m
10 m		M12	
Brick n°5			
A Report of the second of the	-	M8- M10- M12	T _{inst} = 3.0 N.m

SPIT MULTI-MAX	Annex B3
Allocation of anchors, sleeves and bricks	

Table B2: Installation parameters

Sleeve			-		iD-ALL		Perforated 15x130		Sleeve 20x85	
Threaded rod			M8	M10	M12	M8	M10	M8	M10	M12
Drill hole diameter	d ₀	[mm]	10	12	14	16	16	15	15	20
Depth of drilled hole	h ₀	[mm]	80	80	80	70	70	135	135	90
Overall embedment depth	h _{ef}	[mm]	80	80	80	70	70	135	135	90
Brush diameter	-	[mm]	11	13	15	-	-	-	-	-
Torque moment	Tinst	[Nm]	See annex B3							

Steel brush and installation procedure clean for the solid masonry

Nota: For the hollow masonry the cleaning of hole is not necessary.

Table B3: Cleaning method for the solid masonry


	Standard cleaning
Nominal diameter	All diameters
Cleaning method	4 blows+ 4 brushing operation + 4 blows Blowing operation: using a hand pomp, blow 4 times.
	Brushing operation: using the relevant brush, starting from the top of the hole, move downward to the bottom of the hole then move upward to the top of the hole.

Table B4: Minimum curing time

Temperature in the concrete member			Working time	Minimum curing time in wet concrete			
≥+	0	°C	18 min	180 min			
≥+	5	°C	12 min	90 min			
≥ +	10	°C	6 min	60 min			
≥ +	20	°C	4 min	45 min			
≥+	30	°C	2 min	35 min			

SPIT MULTI-MAX	Annex B4
Installation instruction	

Instruction For Use in solid masonry

Drill hole of diameter (d_0) and depth (h_0) with a hammer drill set in rotation-hammer mode using an appropriately carbide drill bit.

4 strokes with SPIT blow-out pump from the back of the hole until return air stream is free of noticeable dust.

4 times with the specified brush size (brush diameter ≥ borehole diameter d₀) by inserting the SPIT steel wire brush to the back of the hole with a twisting motion and removing.

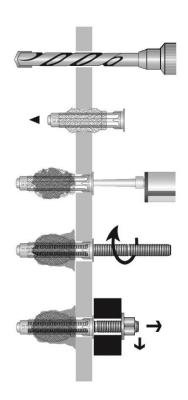
4 strokes with SPIT blow-out pump from the back of the hole until return air stream is free of noticeable dust.

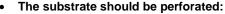
Screw the mixing nozzle onto the cartridge and dispense the first part to waste until an even colour is achieved for each new cartridge or mixing nozzle. Use tube extensions for holes deeper than 250 mm. Starting from the bottom of the hole fill uniformly. In order to avoid air pocket, withdraw slowly the mixing nozzle while injecting the resin. Fill the hole until 1/2 full.

Insert the rod or rebar, slowly and with a slight twisting motion in respect of the gel time indicated in table 4. Remove excess resin from around the mouth of the hole before it sets. Control the embedment depth

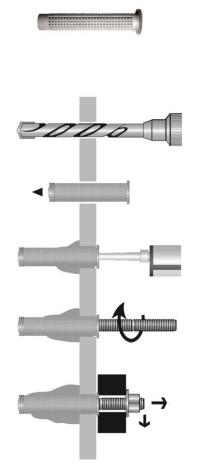
Do not disturb anchor between specified cure time (acc. to table 4)

Attach the fixture and tight the nut at the specified torque


SPIT MULTI-MAX


Annex B5

Installation instruction in solid masonry


Instruction for: Installation in hollow masonry

- using rotation/percussion for bricks 1, 5 and 6,
- using rotation only for bricks 2, 3 and 4.
- Manually position the iD-ALL system in the hole until the flange presses against the exterior wall of the masonry.
- Close the centering plug.
- After inserting the iD-ALL nozzle onto the cartridge, push the nozzle all the way in and inject the resin by pressing the gun six times.
- Using rotation, insert the threaded stud all the way in
- After the resin hardens, install the item being mounted and tighten to the recommended torque.

- The substrate should be perforated:
 - using rotation/percussion for bricks 1, 5 and 6,
 - using rotation only for bricks 2, 3 and 4.
- Manually position the sieve sleeve in the hole until the flange presses against the exterior wall of the masonry.
- Close the centering plug.
- After inserting the nozzle onto the cartridge, push the nozzle all the way in and inject the resin by pressing the gun four times, then move the nozzle backwards and press four more times.
- Using rotation, insert the threaded stud all the way in.
- After the resin hardens, install the item being mounted and tighten to the recommended torque.

SPIT MULTI-MAX

Annex B6

Installation instruction in hollow masonry

Table C1: Characteristic values for tension and shear load

Brick n°	Comp strength	sleeve	Anchor	Effective embedment depth h _{ef}	Characteristic resistance		
DIICK II		SICEVE	size		N _{Rk} 1)	V _{Rk} ^{2) 3)}	
	[N/mm²]			[mm]	[kN]	[kN]	
		:D All	M8	70	2.0	2.5	
		iD-ALL	M10	70	2.0	2.5	
1	6,0	45,400	M8	135	1.5	3.0	
		15x130	M10	135	1.5	3.0	
		20x85	M12	90	1.5	2.0	
		:D ALI	M8	70	1.5	1.5	
		iD-ALL	M10	70	1.5	1.5	
2	9,0	15v120	M8	135	1.5	1.5	
		15x130	M10	135	1.5	1.5	
		20x85	M12	90	2.5	3.5	
	10,0	iD-ALL	M8	70	0.9	4.0	
		ID-ALL	M10	70	0.9	4.0	
3		15x130	M8	135	1.2	3.5	
			M10	135	1.2	3.5	
		20x85	M12	90	2.5	3.0	
		iD-ALL	M8	70	1.2	0.9	
		ID-ALL	M10	70	1.2	0.9	
4	8,0	15x130	M8	135	2.0	1.5	
		138130	M10	135	2.0	1.5	
		20x85	M12	90	0.9	4.0	
		-	M8	80	12.0	9.5	
5	20,0	-	M10	80	12.0	9.0	
		-	M12	80	12.0	12.0	
		iD-ALL	M8	70	1.5	9.0	
		ID-VLL	M10	70	1.5	11.0	
6	12,0	15x130	M8	135	3.0	9.0	
			M10	135	3.0	12.0	
		20x85	M12	90	3.5	10.0	
Partial safety	factor γ _M		2.54)				

¹⁾ For design according to TR54: $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,pb} = N_{Rk,s}$

SPIT MULTI-MAX	Annex C1
Characteristic values for tension and shear load	

²⁾ Failure of the metal part and local brick failure: design according to TR54: $V_{Rk} = V_{Rk,b} = V_{Rk,s}$

³⁾ Brick edge failure: V_{Rk,c} according to TR54

⁴⁾ In absence of national regulations

Table C2: Characteristic bending moment

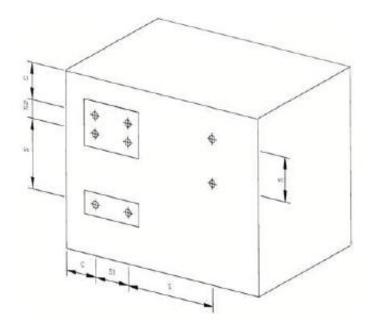
			-		M8	M10	M12
			5.8	[N.m]	18.7	37.4	65.5
Characteristic bending moment	$M_{Rk,s}$	Property class	8.8	[N.m]	30.0	59.8	104.8
			A4-70	[N.m]	26.2	52.3	91.7
			5.8	[-]		1.25	
Partial safety factor	$\gamma_{Ms,v}{}^{1)}$	Property class	8.8	[-]		1.25	
			A4-70	[-]		1.56	

¹⁾ In absence of national regulations

Table C3 : Displacement under tension and shear load

		Λ. Ι	Т	Tension			Shear			
Brick N°	sleeve	Anchor size	Load	Displac	cement	Load	Displac	cement		
		Size	F	δηο	δn∞	F	δνο	δν∞		
			[kN]	[mm]	[mm]	[kN]	[mm]	[mm]		
	iD-ALL	M8		0.3	0.6		1.1	2.3		
		M10		0.3	0.6		1.1	2.3		
1	15x130	M8		0.2	0.4		4.7	9.4		
		M10		0.2	0.4		4.7	9.4		
	20x85	M12		0.2	0.5		1.2	2.4		
	iD-ALL	M8		0.1	0.2		1.0	2.1		
		M10		0.1	0.2		1.0	2.1		
2	15x130	M8		0.1	0.2		1.3	2.7		
		M10		0.1	0.2		1.3	2.7		
	20x85	M12		0.5	1.0		7.2	14.3		
	iD-ALL	M8		0.1	0.2		2.4	4.8		
		M10		0.1	0.2		2.4	4.8		
3	15x130	M8		0.2	0.3		2.6	5.1		
		M10	N_{Rk}	0.2	0.3	V_{Rk}	2.6	5.1		
	20x85	M12	$1.4 \times \gamma_M$	0.2	0.4	$1.4 \times \gamma_M$	4.9	9.9		
	iD-ALL	M8		0.7	1.4		0.5	0.9		
		M10		0.7	1.4		0.5	0.9		
4	15x130	M8		0.2	0.5		2.3	4.7		
		M10		0.2	0.5		2.3	4.7		
	20x85	M12		0.1	0.2		2.1	4.2		
	-	M8		0.2	0.5		0.8	1.6		
5	-	M10		0.4	0.8		0.5	1.0		
	-	M12		0.2	0.5		1.3	2.6		
	iD-ALL	M8		0.2	0.3		2.5	4.9		
		M10		0.2	0.3		2.5	4.9		
6	15x130	M8		0.3	0.5		1.8	3.5		
		M10		0.3	0.5		1.8	3.5		
	20x85	M12		0.1	0.2		0.5	1.1		

SPIT MULTI-MAX	Annex C2
Characteristic bending moments Displacements	


Table C4 : β factor for tests to be carried out on construction works

Bricks	Installation and use	Sleeves	sizes	β factor
		iD-ALL	M8 & M10	0.826
All types	w/w	15 x 130	M8 & M10	0.826
		20 x 85	M12	0.776

Table C5: Edge distances and spacing

	Anchor size									
Brick n°		M8			M10			M12		
	C _{min}	S _{min,} ⊥	S _{min,}	C _{min}	S _{min,} ⊥	S _{min,}	C _{min}	S _{min,} ⊥	S _{min,}	
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	
1	100	190	487	100	190	487	120	190	487	
2	100	274	560	100	274	560	120	274	560	
3	100	300	500	100	300	500	120	300	500	
4	100	250	237	100	250	237	120	250	237	
5	120	240	240	120	240	240	120	240	240	
6	100	247	250	100	247	250	120	247	250	

Nota: $s_{min} = s_{cr}$ and $c_{min} = c_{cr}$

SPIT MULTI-MAX	Annex C3
β factor Edge distances ans spacing	